НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

инженерный институт

ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Методические указания к самостоятельной работе и выполнению контрольной работы

Новосибирск 2021

Кафедра техносферной безопасности и электротехнологий

Составители: к.т.н., доцент. Е.И. Гаршина.

Рецензент д-р техн. наук, проф. И.П. Добролюбов

Общая электротехника и электроника: методические указания к самостоятельной работе по выполнению контрольной работы (дополненное и переработанное)/Новосиб. гос. аграр. ун-т. Инж. ин-т; Сост.: Е.И.Гаршина, - Новосибирск: Изд-во НГАУ, 2021 - 42 с.

Содержат основные сведения по теоретическим основам и методам расчета электрических цепей. Представлены варианты заданий по расчету линейных цепей постоянного, переменного однофазного и трехфазного тока; примеры решений задач по расчету электрических цепей, а также варианты задания по выполнению контрольной работы.

Предназначена для студентов очного и заочного обучения направлений:

- 23.03.01 «Технология транспортных процессов» профиля «Организация и безопасность движения»;
- -23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» профиля «Автомобили и автомобильное хозяйство».

Утверждена и рекомендована к изданию учебно-методическим советом Инженерного института (протокол № 5 от 24 декабря 2020 г.).

© Новосибирский государственный аграрный университет 2021

ВВЕДЕНИЕ

Дисциплина Электротехника и электроника или Общая электротехника и электроника в соответствии с требованиями ФГОС ВО направлена на формирование следующей общепрофессиональной компетенции:

— Способность применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формирования и решения технических и технологических проблем в области технологии, организации, планирования и управления технической и коммерческой эксплуатации транспортных систем.

В результате изучения дисциплины студент должен:

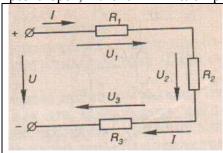
Знать: основные положения, методы и законы естественнонаучных дисциплин:

- электротехническую терминологию и символику, основы теории электромагнитного поля и электрических цепей, основные величины, характеризующие электрические и магнитные цепи и поля и единицы их измерения, принципы электрических измерений электрических и неэлектрических величин, принципы устройства основных электронных приборов, свойства и области применения основных электротехнических и электронных устройств;

Уметь: применять основные законы естественнонаучных дисциплин по профессиональной деятельности:

- читать электрические и электронные схемы, рассчитывать электрические и магнитные цепи и поля, выбирать элементы электрических цепей и средства измерения электрических величин, анализировать работу электротехнических устройств;
- обеспечивать эффективную и безопасную работу персонала с электрическими и электронными устройствами.

Владеть:

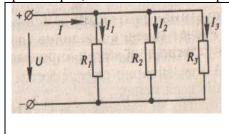

- методами математического анализа, исследования, расчета и моделирования электромагнитных процессов и преобразователей энергии;
- приемами использования средств измерения, методами определения погрешности и оценки результатов измерений.

ТЕМА 1. РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

1.1 Основные сведения.

Приступая к расчету электрических цепей, необходимо знать способы соединения (последовательное, параллельное, смешанное) как приемников, так и источников электрической энергии.

Так, при последовательном соединении резисторов полное эквивалентное сопротивление равно сумме сопротивлений всех резисторов, включенных в электрическую цепь:



$$R_{3KB} = \sum R_i$$

где $R_{\text{экв}}$ -эквивалентное или полное сопротивление электрической цепи;

 R_i - омическое сопротивление і -го резистора.

а при параллельном соединении резисторов полное эквивалентная проводимость равна сумме проводимостей всех резисторов, включенных в электрическую цепь:

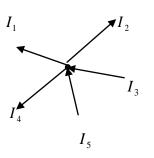
$$\frac{1}{R_{ave}} = \sum \frac{1}{R_i}$$

где $R_{\mbox{\tiny ЭКВ}}-$ эквивалентное или полное сопротивление электрической цепи;

 R_i - омическое сопротивление і -го резистора;

$$\frac{1}{R_{_{2KR}}}$$
, $\frac{1}{R_{_{i}}}$ - проводимости,

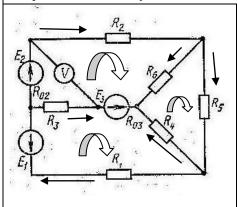
соответственно, полная и эквивалентная і-го элемента электрической цепи.


При расчете электрической цепи обычно пользуются законами Ома и Кирхгофа.

Закон Ома определяется выражением:

$$I = \frac{U}{R}$$

Законы Кирхгофа определяются выражениями:

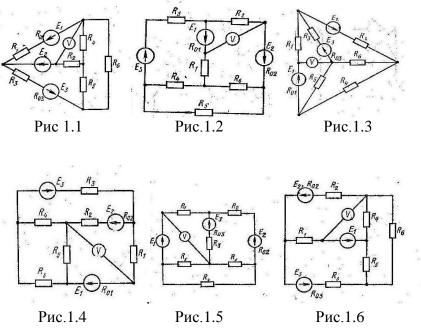

Первый закон: Алгебраическая сумма токов, соединенных в один узел, равна нулю

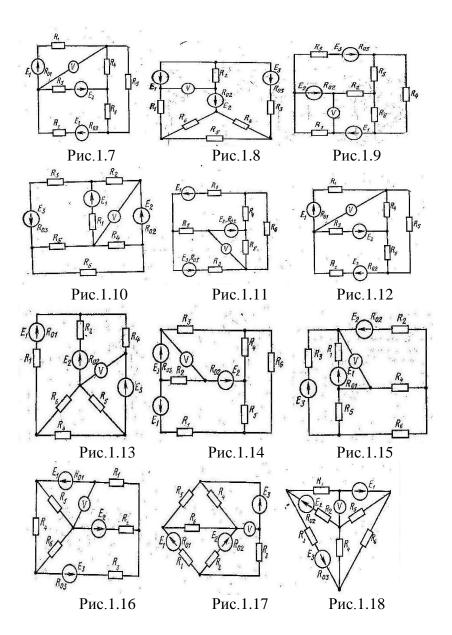
$$\sum$$
 I= 0,
или для примера $-I_1-I_2+I_3-I_4+I_5=0$

Примечание: направление токов в ветвях определяется произвольно: например, токи, входящие в узел, принимают положительными, а выходящие из узла — отрицательными

Второй закон: Алгебраическая сумма ЭДС в замкнутом контуре электрической цепи равна алгебраической сумме падений напряжений на всех участках этой цепи

$$\sum E_i = \sum R_i \cdot I_i$$


Примечание: для определения знаков в алгебраической сумме произвольно задаются направлением обхода контура: по часовой стрелки или против. ЭДС источника и направление токов ветвей, совпадающие с выбранным направлением обхода контура, считаются положительным, а не совпадающие — отрицательной.


Задание 1

Для электрической цепи, схема замещения которой изображена на рис. 1.1-1.27, по заданным в табл.1 значениям сопротивлений и ЭДС выполнить следующее:

- указать на схеме токи во всех ветвях,
- составить систему уравнений по законам Кирхгофа;
- найти токи, протекающие во всех ветвях, пользуясь методом контурных токов;
- определить показание вольтметра, установленного в цепь, и составить баланс мощностей для заданной схемы;
- построить в масштабе потенциальную диаграмму для внешнего контура.

Номер варианта задания соответствует номеру в списочном составе группы.

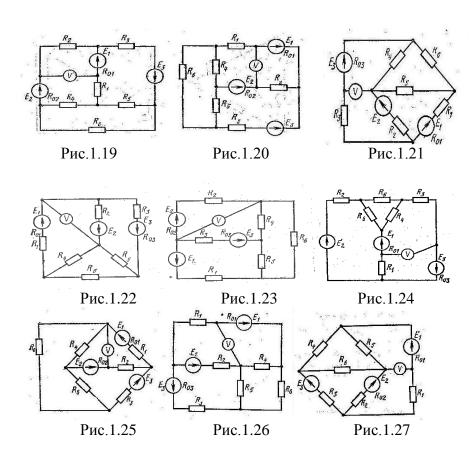


Таблица 1

Bap	иант /	Значения параметров								L			
		E ₁ ,	E ₂ ,	E ₃ ,	R_{01}	R_{02}	R_{03}	R_1 ,	R_2 ,	R ₃ ,	R_4 ,	R ₅ ,	R ₆ ,
/cx	ема	В	В	В	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом
1	1-1	5	16	30	0,4	-	0,7	6	4	3	2	5	3
2	1-2	54	27	3	1,2	0,9	-	8,0	3	1	4	2	2
3	1-3	22	24	10	0,2	-	1,2	2	1	8	4	10	6
4	1-4	48	12	6	0,8	1,4	-	4,2	4	2	12	6	2
5	1-5	36	10	25	-	0,4	0,5	4	8	3	1	2	7
6	1-6	16	5	32	-	0,6	0,8	9	3	2	4	1	5
7	1-7	72	12	4	0,7	1,5	-	6	1	10	4	12	4
8	1-8	36	9	24	-	0,8	0,8	3	4	2	1	5	1
9	1-9	3	66	9	-	0,7	1.2	1	4	2	2	7	3
10	1-10	36	10	25	-	0,4	0,5	4	8	3	1	2	7
11	1-11	16	5	32	-	0,6	0,8	9	3	2	4	1	5
12	1-12	48	12	6	0,8	1,4	-	4,2	4	2	12	6	2
13	1-13	10	6	24	0,8	0,3	-	3,5	5	6	6	3	1
14	1-14	6	20	4	-	0,8	1,2	4	6	4	4	3	3
15	1-15	20	22	9	0,1	-	1,1	1	2	6	3	8	4
16	1-16	4	24	6	0,9	-	0,5	9	8	1	6	10	4
17	1-17	16	8	9	0,2	0,6	-	2,5	6	6	5	10	5
18	1-18	12	48	6	-	0,4	0,4	2,5	1	4	15	2	2
19	1-19	12	30	25	1,0	0,4	-	1	5	1	1	6	4
20	1-20	30	16	10	0,6	0,8	-	2	5	3	1	8	5
21	1-21	4	9	18	0,8	-	0,7	2,7	10	4	8	10	2
22	1-22	10	6	24	0,8	0,3	-	3,5	5	6	6	3	1
23	1-23	6	20	4	-	0,8	1,2	4	6	4	4	3	3
24	1-24	8	6	36	1,3	-	1,2	3	2	1	6	8	6
25	1-25	12	6	40	1,2	0,6	-	2	3	8	5	7	8
26	1-26	8	6	36	1,3	-	1,2	3	2	1	6	8	6
27	1-27	16	8	9	0,2	0,6	-	2,5	6	6	5	10	5

Пример решения задания 1.

В соответствии с заданием провести расчет электрической цепи постоянного тока, представленной на рис. 1-1.

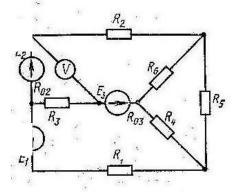


Рис. 1.1. Вариант электрической цепи, предложенной для примера расчета.

Дано:

 E_1 = 12 B; E_2 = 36 B; E_3 = 12 B;

 R_1 =3,5 Om; R_0 =0,4 Om; R_2 =5 Om; R_0 =1,2 Om; R_3 =1 Om; R_4 =5 Om; R_5 =6 Om; R_6 =9 Om.

Выполняем следующие действия:

1. В произвольном порядке буквами **A**, **Б**, **B**, **Г**, **Д** обозначаем узлы, а также намечаем направление токов, протекающих во всех ветвях (см.рис. 1.2).

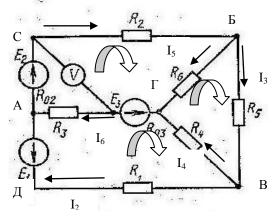


Рис.1.2. Схема замещения электрической цепи с обозначенными узлами и токами, протекающими во всех ветвях цепи.

- 2. Составляем уравнения:
- по 1-ому закону Кирхгофа в соответствии с выбранным направлениемтоков в ветвях, сходящихся в узлах:

для узла А $I_1 = I_2 + I_6$;

для узла Б $I_1 = I_3 + I_5$;

для узла В $I_5 = I_5 + I_4$;

для узла Γ $I_6 = I_4 + I_5$.

- по 2-ому закону Кирхгофа в соответствии с выбранным направлением обхода контуров:

для контура 1
$$E_2 - E_3 = (R_{02} + R_2) I_1 + R_6 I_5 + (R_{03} + R_3) I_6$$
;

для контура 2 $E_3 - E_1 = R_1 I_2 - (R_{03} + R_3) I_6 - R_4 I_4;$

для контура 3 $0 = R_4 I_4 - R_6 I_5 + R_5 I_3$.

При подставлении в уравнения значений сопротивлений и ЭДС из данных получим следующие уравнения:

для контура 1 $24 = 5.4 I_1 + 9 I_5 + 2.2 I_6$;

для контура 2 $0 = 3.5 I_2 - 2.2 I_6 - 5 I_4$;

для контура 3 $0 = 5I_4 - 9I_5 + 6I_{3.}$

3. Составляем для каждого выбранного ранее контуров уравнения контурных токов, предварительно наметив направление собственных контурных токов (направление контурных токов может совпадать с направлением обхода контура). В результате получаем уравнения, представленные следующими выражениями:

для контура 1
$$(R_{02}+R_2+R_{03}+R_3+R_6)$$
 $I_{\kappa 1}$ - $(R_{03}+R_3)$ $I_{\kappa 2}$ - R_6 $I_{\kappa 3}=E_2-E_3$ для контура 2 - $(R_{03}+R_3)$ $I_{\kappa 1}$ + $(R_{03}+R_3+R_4+R_1)$ $I_{\kappa 2}$ - R_4 $I_{\kappa 3}=E_3-E_1$ для контура 3 - R_6 $I_{\kappa 1}$ - R_4 $I_{\kappa 2}$ + $(R_4+R_6+R_5)$ $I_{\kappa 3}=0$

При подставлении в уравнения заданных значений сопротивлений и ЭДС из данных получим следующие уравнения:

для контура 1 16,6 $I_{\kappa 1}$ - 2,2 $I_{\kappa 2}$ - 9 $I_{\kappa 3}$ = 24; для контура 2 -2,2 $I_{\kappa 1}$ + 10,7 $I_{\kappa 2}$ - 5 $I_{\kappa 3}$ = 0;

для контура 3 $-9 I_{\kappa 1} - 5 I_{\kappa 2} + 20 I_{\kappa 3} = 0.$

Полученная система уравнений может быть решена с помощью определителей (см. Приложение 1). Таким образом, получим следующие значения определителей:

главный определитель
$$\Delta=$$
 $-2,2$ -9 $-2,2$ $+10,7$ $-5=1975,9$ -9 -5 $+20$ $+24$ $-2,2$ -9 0 $+10,7$ $-5=4806$ 0 -5 $+20$ $+16,6$ $+24$ -9 $-2,2$ 0 $-5=2136$ -9 0 $+20$ $+16,6$ $-2,2$ $+24$ $-2,2$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 0 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -9 $-5=2136$ -2

4. По полученным значениям определителей определяем значения контурных токов, т.е. значения токов в ветвях внешнего контура схемы замещения рассматриваемой электрической цепи (см. рис. 1.2):

$$\begin{split} &I_{1=}I_{\kappa 1}=\frac{4806}{1975,9} &=2,43 \text{ (A)}; \\ &I_{2=}I_{\kappa 2}=\frac{2136}{1975,9} &=1,08 \text{ (A)}; \\ &I_{3=}I_{\kappa 3}=\frac{2575,2}{1975,2} &=1,30 \text{ (A)}; \end{split}$$

5. Определяем значения токов в ветвях, являющихся общими для, соответственно, контуров 1 и 2, контуров 1 и 3, контуров 2 и 3. Для этого воспользуемся уравнениями, составленными по 1-ому закону Кирхгофа, и получим следующие величины:

$$I_4 = I_3 - I_2 = 1,3 - 1,08 = 0,22$$
 (A);
 $I_5 = I_1 - I_3 = 2,43 - 1,30 = 1,13$ (A);
 $I_6 = I_1 - I_2 = 2,43 - 1,08 = 1,35$ (A).

6. Для проверки правильности решения составим уравнение баланса мощностей:

-
$$E_2 I_1 + E_3 I_6 - E_1 I_3 = R_1 I_2^2 + R_2 I_1^2 + R_3 I_6^2 + R_4 I_4^2 + R_5 I_3^2 + R_6 I_5^2$$
 Подставив расчетные значения токов, получим равенство 58,32 $B_T = 57.29 \ B_T$.

Погрешность вычисления составила 1,7%.

7. Построение потенциальной диаграммы основывается на знании обобщенного закона Ома и строится только для внешнего контура схемы замещения электрической цепи. построения потенциальной диаграммы принимаем потенциал узла А, равным нулю, т.е. условно заземляем. Тогда, учитывая что ток течет от большего потенциала к меньшему, записываем уравнения потенциалов других точек внешнего контура схемы замещения электрической цепи и определяем их значения в соответствиии со следующими выражениями

$$\begin{split} \phi_A &= 0 \ B; \\ \phi_C &= \phi_A + E_2 = 0 + 36 = 36 \ B; \\ \phi_B &= \phi_C - R_2 I_1 = 36 - 12, 2 = 23, 8 \ B; \\ \phi_B &= \phi_B - R_5 I_3 = 23, 8 - 7, 9 = 15, 9 \ B; \\ \phi_{\mathcal{A}} &= \phi_B - R_1 I_2 = 15, 9 - 3, 81 = 12, 09 \ B; \\ \phi_A &= \phi_{\mathcal{A}} - E_2 = 12, 09 - 12, 0 = 0, 09 \ B. \end{split}$$

Далее выполняются следующие действия:

- строим координатную сетку.
- по оси абсцисс откладываем значения сопротивлений, включенных во внешний контур схемы замещения электрической цепи, а по оси ординат значение расчитанных потенциалов.
- полученные точки пересечения координат на сетке соединяем прямой и получаем кривую изменения потенциалов в точках электрической цепи, т.е. потенциальную диаграмму (см. рис. 1-3).

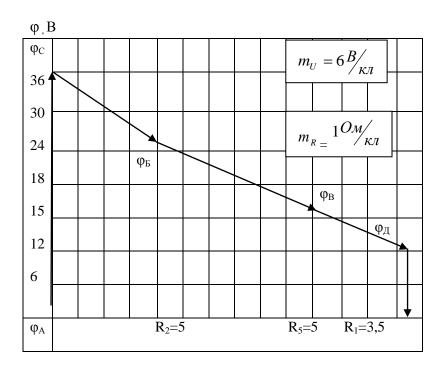


Рис. 1-3. Потенциальная диаграмма.

ТЕМА 2. РАСЧЕТ ЭЛЕКРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА

2.1. Основные сведения.

Переменный электрический ток — электрический ток, периодически изменяющийся по величине и направлению с течением времени,т.е. характеризующийся мгновенными значениями тока в конкретный момент времени.

В общем случае цепь переменного тока характеризуется наличием в электрических цепях трех приемников: активного сопротивления R, индуктивности L и емкости C.

При анализе работы и расчетах цепей переменного тока исходят из того, что для мгновенных значений переменного

тока можно использовать все соотношения, законы и методы, используемые в цепях постоянного тока. Широкое применение для расчета сложных цепей переменного тока нашел символический метод, основанный на использовании комплексных чисел и позволяющий вести расчет с применением алгебраических формул. Исходя из этого, расчет электрических схем переменного тока, содержащих

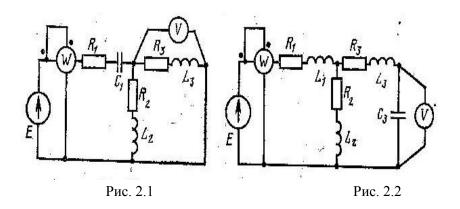
- идеальные элементы R, L и C, основывается на данных таблицы 2.1;
- реальные элементы $R,\ L$ и $C,\$ основывается на данных таблицы 2.2.

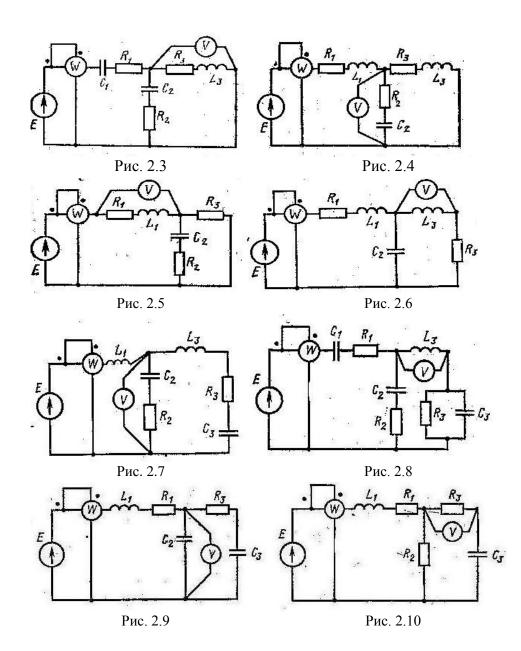
Таблица 2.1. Анализ простейших электрических цепей переменного тока, содержащих идеальные элементы $R,\ L$ и C.

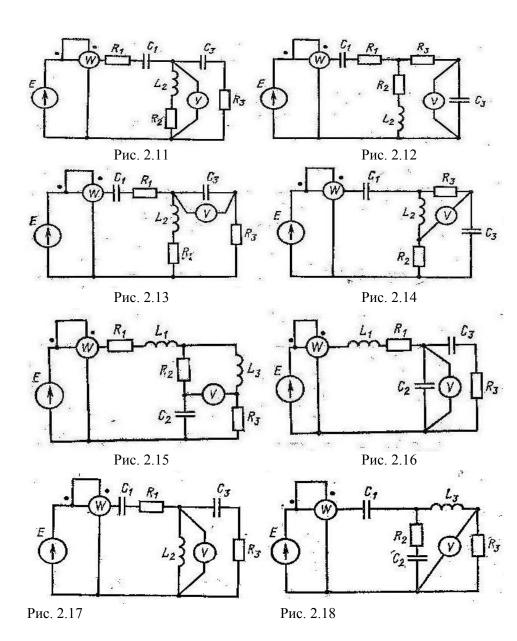
параметр	ры /	Простейшие схемы замещения							
yemi	ice Kou								
Сопротивле ние, Ом	абсолютное значение	R	$X_L = 2\pi \cdot f \cdot L$	$X_C = \frac{1}{2\pi \cdot f \cdot C}$					
Сопротивление в виде омплескного числа, Ом	Алгебраиче ская форма	R	$+jX_L = +j2\pi \cdot f \cdot L$	$-jX_C = -j\frac{1}{2\pi \cdot f \cdot C}$					
Сопротивление в виде комплескного числа, Ом	Показатель ная форма	R	$X_L \cdot e^{+j90^0}$	$X_C \cdot e^{-j90^0}$					
ность	Активная Вт	$P = R \cdot I^2$							
Мощность	Реактивная, Вар		$Q_L = +jX_L \cdot I^2$	$Q_C = -jX_C \cdot I^2$					

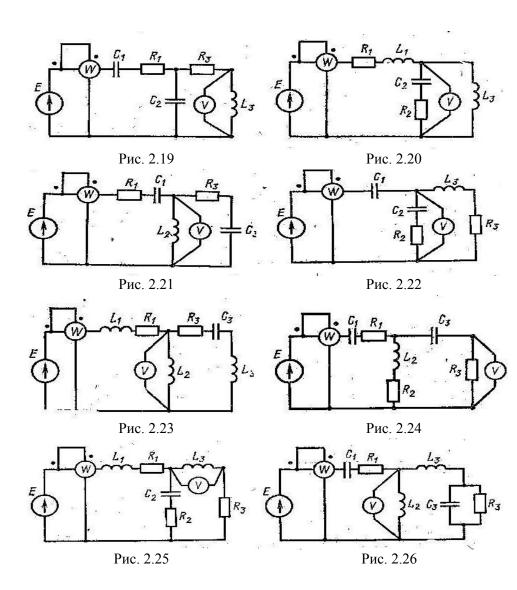
Таблица 2.2. Анализ простейших электрических цепей переменного тока, солержащих реальные элементы R L и C

содера	содержащих реальные элементы R, L и C.								
парамет,		Электрических цепей переменного тока,							
ųenu ¹		содержащих реальные элементы R (Ом), L (Гн) и							
		С(Ф).	$C(\Phi)$.						
	/								
Сопротивление в виде комплескного числа, Ом	Алгебраиче ская форма	$R + jX_L =$	$R - jX_C =$						
Сопротивл	Показате льая форма	$\sqrt{(R^2 + X_L^2) \cdot e^{+j \operatorname{arctg} \frac{X_L}{R}}}$	$\sqrt{(R^2 + X_C^2) \cdot e^{-j \operatorname{arctg} \frac{X_C}{R}}}$						
	Активная , Вт	$P = R \cdot I^2$	$P = R \cdot I^2$						
Мощность	Реактив ная, Вар	$Q_L = +jX_L \cdot I^2$	$Q_C = -jX_C \cdot I^2$						
	Полная, ВА	$S = P + jQ_L =$ $= \sqrt{(P^2 + Q_L^2) \cdot e^{+jarctg \frac{Q_L}{P}}}$	$S = P - jQ_C =$ $= \sqrt{(P^2 + Q_C^2) \cdot e^{-jarctg \frac{Q_C}{P}}}$						


Задание 2


РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ОДНОФАЗНОГО ПЕРЕМЕННОГО ТОКА


По заданным в табл. 2.3. параметрам и ЭДС источника провести расчет в нагрузочном режиме для электрической цепи


- со смешанным соединением элементов R,L,C, схема замещения которой изображена на рис. 2.1 2.28,
- преобразованной (при установке размыкающего ключа в одну из ветвей схемы замещения) цепи с последовательным соединением элементов, по заданным в табл. 2.3. параметрам и ЭДС источника Для выполнения задания определить:
- токи во всех ветвях цепи и падения напряжения на отдельных участках;
- определить активную, реактивную и полную мощности электрической цепи и составить баланс мощностей;
- построить в масштабе на плоскости комплесных чисел векторные диаграммы;
- определить показания вольтметра и активную мощность, измеряемую ваттметром.

Номер варианта задания соответствует номеру в списочном составе группы.

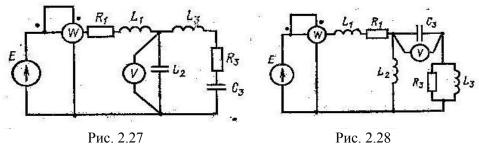


Таблица 2.3

Ba	рис		Значения параметров								
ри	уно	E,	C_1 ,	C ₂ ,	C ₃ ,	L_1 ,	L_2 ,	L ₃ ,	R_1 ,	R_2 ,	R_3 ,
ан	К	В	МК	мкф	мкф	мГн	мГн	мГн	Ом	Ом	Ом
T			ф								
1	2-1	150	637		-	-	31,8	31,8	2	3	4
2	2-2	100	-	-	100	15,9	9	15,9	8	3	4
3	2-3	120	637	300-	-	-		15,9	8	3	4
4	2-4	200	-	300	-	15,9	-	15,9	8	3	4
5	2-5	200	-	159	-	115-	-		10	4	10
6	2-6	50		159	-	159-	-	115	10		10
7	2-7	220	-	318	159	9,55	-	95	-	10	4
8	2-8	50	500	159	159	-	-	31,8	3,5	20	4
9	2-9	120	-	300	100	31,8	-	-	5	-	8
10	2-10	200	-	-	100	31,8	-	-	5	10	8
11	2-11	220	637	-	200	-	15,9	-	5	10	8
12	2-12	150	100	-	200	-	15,9	-	10	2	10
13	2-13	120	100	-	200	-	15,9	-	10	8	10
14	2-14	200	637	-	200	-	31,8		-	8	10
15	2-15	50	-	159	-	31,8	-	95	15	10	10
16	2-16	100	-	159	200	15,9	-	-	15	-	10

Продолжение таблицы 2.3

Ba	рис		Значения параметров								
ри	уно										
ан	К										
T		E,	C_1 ,	C ₂ ,	C ₃ ,	L_1 ,	L_2 ,	L ₃ ,	R_1 ,	R_2 ,	R_3 ,
		В	мкф	мкф	мкф	мГн	мГн	мГн	Ом	Ом	Ом
17	2-17	200	637		200	-	31,8		15		2
18	2-18	220	637	159	-	-	-	95	-	10	6
19	2-19	100	637	159		-	-	95	6	-	5
20	2-20	100	-	159	-	25	-	95	6	4	-
21	2-21	220	637	-	637	-	9	-	6	-	7
22	2-22	50	318	637	-	-	-	31,8	-	10	4
23	2-23	120	-	-	300	20	15,9	31,8	5	-	10
24	2-24	200	318	-	300	-	15,9		10	10	4
25	2-25	50	-	318	-	19,5	-	31,8	8	10	4
26	2-26	100	637	-	200	-	31,8	95	8	-	4
27	2-27	200	-	318	200	15,9	-	95	8	-	4
28	2-28	150	-	-	637	95	20	20	7	-	6

Пример решения задания 2.

В качестве примера для решения проведем расчет электрической цепи, схема замещения которой представлена на рис. 2-29.

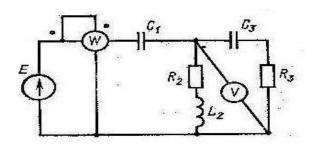


Рис.2-29. Схема замещения электрической цепи однофазного переменного тока.

Дано: E = 110 B; $R_1 = 0 O$ м; $R_2 = 5 O$ м; $R_3 = 6 O$ м;

 $C_1 = 1482$ мкф; $C_2 = 0$ мкф; $C_3 = 398$ мкф;

 $L_1 = 0 \text{ M}\Gamma \text{H}; L_2 = 63,7 \text{ M}\Gamma \text{H}; L_3 = 0 \text{ M}\Gamma \text{H}.$

Решение.

1. Расчет электрической цепи со смешанным соединением элементов R,L,С в нагрузочном режиме

1.1. Определяем реактивные сопротивления элементов: катушки индуктивности L_2 и конденсаторов C_1 и C_2 .

$$X_{L2} = 2 \cdot \pi \cdot f \cdot L_2 = 2 \cdot 3,14 \cdot 50 \cdot 63,7 \cdot 10^{-3} = 20 \text{ OM};$$

$$X_{C1} = \frac{1}{2 \cdot \pi \cdot f \cdot C_1} = \frac{1}{2 \cdot 3,14 \cdot 50 \cdot 398 \cdot 10^{-6}} = 2 \text{ Om};$$

$$X_{C3} = \frac{1}{2 \cdot \pi \cdot f \cdot C_3} = \frac{1}{2 \cdot 3,14 \cdot 50 \cdot 398 \cdot 10^{-6}} = 8 \text{ Om.}$$

1.2. Определяем комплексные сопротивления ветвей цепи в алгебраической и показательной формах комплексных чисел:

$$\underline{Z_2} = R_2 + jX_{L2} = 5 + j20 = \sqrt{(R_2^2 + X_{L2}^2) \cdot e^{+jarctg\frac{X_{L2}}{R_2}}} =$$

$$= \sqrt{(5^2 + 20^2) \cdot e^{+jarctg\frac{20}{5}}} = 20,6 \cdot e^{+j77^0} \text{ Om};$$

$$\underline{Z_3} = R_3 - jX_{C3} = 6 - j8 = \sqrt{(R_3^2 + X_{C3}^2) \cdot e^{-jarctg \frac{X_{C3}}{R_3}}} =$$

$$= \sqrt{(6^2 + 8^2) \cdot \cdot \cdot e^{+jarctg \frac{8}{6}}} = 10 \cdot e^{-j53^0} \text{ Om.}$$

1.3. Определяем комплексное сопротивление параллельно соединенных ветвей, содержащих \underline{Z}_2 Z_3 , и комплекс полного сопротивления цепи в алгебраической и показательной формах комплексных чисел:

$$\underline{Z}_{2,3} = \frac{\underline{Z}_2 \cdot \underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} \cdot = \frac{20,6 \cdot e^{+j77^0}}{5 + j20 + 6 - j8} \cdot 10e^{-j53^0} = \frac{202,6e^{+j24^0}}{11 + j12} = \frac{206e^{+j24_0}}{16,25e^{+j46^0}} = 12,68e^{-j22^0} = 12,68 \cdot \cos(-22^0) + j12,68 \cdot \sin(-22^0) = 11,76 \cdot j4,75 \text{ OM};$$

$$\underline{Z}_{\text{ПОЛН}} = +(-jX_{\text{Cl}}) + \underline{Z}_{2,3} = -j2 + 11,76 - j4,75 = 11,76 - j6,75 = \sqrt{(11,76^2 + 6,75^2)} \cdot e^{-jarctg} \frac{6,75}{11,76} = 13,55 \cdot e^{-j30^0} \text{ OM}.$$

2. Определяем токи в ветвях:

$$\underline{\mathbf{I}}_{\text{полн}} = \frac{E}{Z_{\text{полн}}} = \frac{110}{13.55e^{-j30^{\circ}}} = 8,11 \cdot e^{+j30^{\circ}} \,\mathrm{A};$$

$$\underline{\mathbf{U}}_{23} = \underline{\mathbf{Z}}_{2,3} \ \underline{\mathbf{I}}_{\text{полн}} = 12,68e^{-j22^0} \ 8,11 \cdot e^{+j30^0} = 102,83 \cdot e^{+j8^0} \ \mathbf{B}$$

$$\underline{\mathbf{I}}_2 = \frac{U_{23}}{Z_2} = \frac{102,83e^{+j8^0}}{20,6e^{+j77^0}} = 5,0 \cdot e^{-j69^0} \,\mathrm{A};$$

$$\underline{\mathbf{I}}_{3} = \frac{U_{23}}{\mathbf{Z}_{3}} = \frac{102,83e^{+j8^{0}}}{10e^{-j53^{0}}} = 10,28 \cdot e^{+j61^{0}} \,\mathrm{A}.$$

1.4. Определяем падения напряжения на всех элементах схемы замещения:

$$\underline{\mathbf{U}}_{c1} = (-\mathbf{j}\mathbf{X}_{C1}) \ \underline{\mathbf{I}}_{\text{полн}} = 2 \cdot e^{-j90^{\circ}} \cdot 8,11 \cdot e^{+j30^{\circ}} = 16,22 \cdot e^{-j30^{\circ}} \, \mathrm{B};$$

$$\underline{\mathbf{U}}_{R2} = \mathbf{R}_2 \, \underline{\mathbf{I}}_2 = 5 \cdot 5 \cdot e^{-j69^0} = 25 \cdot e^{-j69^0} \, \mathbf{B};$$

$$\underline{\mathbf{U}}_{L2} = (\mathbf{j}\mathbf{X}_{L2}) \ \underline{\mathbf{I}}_{2} = 20 \cdot e^{+j90^{0}} \cdot 5 \cdot e^{-j69^{0}} = 100 \cdot e^{+j31^{0}} \, \mathrm{B};$$

$$\underline{\mathbf{U}}_{R3} = \mathbf{R}_3 \ \underline{\mathbf{I}}_3 = \ 6 \cdot 10,28 \cdot e^{+j61^0} = 61,68 \cdot e^{+j61^0} \, \mathrm{B};$$

$$\underline{\mathbf{U}}_{C3} = (-\mathbf{j}\mathbf{X}_{C3})\,\underline{\mathbf{I}}_{3} = 8\cdot e^{-j90^{0}}\cdot 10,28\cdot e^{+j61^{0}} = 82,24\cdot e^{-j29^{0}}\,\mathbf{B}.$$

1.5. Определяем активную, реактивную и полную мощность. Составляем баланс мошностей.

Активная мощность равна $P = R_2 \cdot I_2^2 + R_3 \cdot I_3^2 = 125 + 634,07 = 759.07$ Вт;

Реактивная мощность определяется выражением:

$$Q = Q_{L2} - Q_{C1} - Q_{C3} = X_{L2} \cdot I_2^2 - X_{C1} \cdot I_{now}^2 - X_{C3} \cdot I_3^2 = -500 - 135, 8-845, 4= -481, 2 \text{ Bap};$$

$$S_{nonh} = P + jQ = \sqrt{(P^2 + Q^2) \cdot e^{-jarctg\frac{Q}{P}}}$$

$$S_{nonh} = 759,07 - j481,2 = \sqrt{(759,07)^2 + 481,2^2} \cdot e^{-j310} = 892.87 \cdot e^{-j310} \text{ BA}$$

$$S_{ucm} = E \cdot \underline{\mathbf{I}}^*$$
___nonH = $110 \cdot 8.11 \cdot e^{-j30^0} = 893 \cdot e^{-j30^0}$ BA

Так как $S_{non} = S_{ucm}$ (892,87 \approx 893), то баланс соблюдается с точностью 0,01 %.

1.6. Построение векторной диаграммы на плоскости комплексных чисел:

Для построения векторной диаграммы составляем уравнения по 2-ому закону Кирхгофа для контуров, представленных последовательным соединением

-элементов
$$C_1$$
, L_2 , R_2 для 1-го контура $\overrightarrow{E} = \overrightarrow{U_{C1}} + \overrightarrow{U_{L2}} + \overrightarrow{U_{R2}}$

-элементов
$$C_1$$
, C_3 , R_3 для 2-го контура $\overrightarrow{E} = \overrightarrow{U_{c1}} + \overrightarrow{U_{c3}} + \overrightarrow{U_{R3}}$

Рис. 2-30. Векторная диаграмма токов и падений напряжений для электрической цепи со смешенным соединением элементов R,L,C в нагрузочном режиме.

2. Расчет цепи с последовательно соединенными элементами R, L C в нагрузочном режиме.

Чтобы провести расчет необходимо преобразовать схему замещения, т.е. в одну из ветвей установить размыкающий элемент. омплекс Для данной схемы замещения электрической цепи размыкающий элемент включим в ветвь, содержащую элементы R_3 и C_3 . Тогда цепь будет представлять последовательное соединение элементов C_1 , R_2 и L_2 .

Расчет проводим по следующей программе:

3.1. Определяем комплекс полного сопротивления полученной цепи
$$\underline{Z}_{\text{полн}} = +(-jX_{\text{C1}}) + R_2 + jX_{\text{L2}} = -j2 + 5 + j20 = 5 + j18 =$$
 $= \sqrt{(5^2 + 18^2)} \cdot e^{+jarctg\frac{18}{5}} = 18.7 \cdot e^{+j75^0}$ Ом.

2.2. Определяем значение тока, протекающего в цепи:

$$I_{\text{no,TH}} = \frac{E}{Z_{\text{no,TH}}} = \frac{110}{18,7 \cdot e^{+j75^0}} = 5,88 \cdot e^{-j75^0} \,\mathrm{A}$$

2.3. Определяем значения падений напряжений на всех элементах:

$$\begin{split} &\underline{\mathbf{U}}_{\text{c1}} = (-\,\mathbf{j}\mathbf{X}_{\text{C1}}) \ \ \underline{\mathbf{I}}_{\text{полн}} = 2\cdot e^{-j90^{0}}\cdot 5,88\cdot e^{-j75^{0}} = 11,76\cdot e^{-j165^{0}} \ \mathbf{B}; \\ &\underline{\mathbf{U}}_{\text{R2}} = \mathbf{R}_{2} \ \underline{\mathbf{I}}_{\text{полн}} = \ 5\cdot 5,88\cdot e^{-j75^{0}} = 29,41\cdot e^{-j75^{0}} \ \mathbf{B}; \end{split}$$

$$\underline{\mathbf{U}}_{L2} = (\mathbf{j}\mathbf{X}_{L2}) \ \underline{\mathbf{I}}_{2} = 20 \cdot e^{+j90^{0}} \cdot 5.88 \cdot e^{-j75^{0}} = 117.6 \cdot e^{+j15^{0}} \, \mathrm{B};$$

1.7. Определяем активную, реактивную и полную мощность.

Составляем баланс мощностей.

Активная мощность равна $P = R_2 \cdot I_{now}^2 = 172,9 \text{ Bt};$

Реактивная мощность определяется выражением:

$$Q = Q_{L2} - Q_{C1} = X_{L2} \cdot I_{now}^2 - X_{C1} \cdot I_{now}^2 = 691,5-69,15=622,35 \text{ Bap};$$

Комплекс полной мощности определяется выражением:

$$S_{nonh} = P + jQ = \sqrt{(P^2 + Q^2) \cdot e^{-jarctg_P^Q}}$$

$$S_{nonh} = 172.9 - j622.35 = \sqrt{(172.9)^2 + 622.35^2} \cdot e^{-jarctg \frac{622.35}{172.9}} = 646.0 \cdot e^{-j75^0} \text{ BA};$$

Так как $S_{noлH} = S_{ucm}$ (646,0 \approx 646,8), баланс соблюдается с точностью 0,1 %.

1.8. Построение векторной диаграммы на плоскости комплексных чисел:

Для построения векторной диаграммы составляем уравнения по 2-ому закону Кирхгофа для контуров:

$$\vec{E} = \overrightarrow{U_{C1}} + \overrightarrow{U_{L2}} + \frac{m_T = 2 \frac{4}{\sqrt{cu}}}{m_V = 20 \frac{3}{\sqrt{cu}}}$$

$$\overrightarrow{U_{D2}} \qquad \overrightarrow{U_{L2}} + 1$$

$$\overrightarrow{U_{D2}} \qquad \overrightarrow{U_{L2}} + 1$$

Рис. 2-32. Векторная диаграмма токов и падений напряжений для электрической цепи с последовательно соединенными элементами R.L.C.

ТЕМА 3. РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ТРЕХФАЗНОГО ПЕРЕМЕННОГО ТОКА

Основные сведения

Трехфазной называется электрическая цепь, в различных ветвях которой действуют три одинаковые по амплитуде синусоидальные ЭДС, имеющие одну частоту f, но сдвинутые относительно друг друга на угол 120^0 ($2\pi/3$), т.е.

$$e_A = E_m \sin \omega t$$
; $e_B = E_m \sin (\omega t - 120^0)$; $e_C = E_m \sin (\omega t + 120^0)$.

Для комплексных значений ЭДС

$$E_A = E_m e^{-j0}; \qquad E_B = E_m e^{-j2\pi/3}; \qquad E_C = E_m e^{+j2\pi/3} \; .$$

Существует два способа соединения фазных обмоток:

-по типу «эвезда», когда концы фазных обмоток объеденены в общую точку, называемую нейтральной;

-по типу «треугольник», когда начало последующей фазной обмотки соединена с концом предыдущей.

Основными соотношениями между линейными и фазными напряжениями, а также между линейными и фазными токами принения разных способах объединения фазных обмоток:

-при соединении «звездой»

$$U_{\scriptscriptstyle \Pi} = \sqrt{3} \ U_{\scriptscriptstyle \phi} \ ; \quad I_{\scriptscriptstyle \Pi} = I_{\scriptscriptstyle \phi}$$

- при соединении «треугольником»

$$U_{_{\pi}}=U_{_{\phi}}$$
; $I_{_{\pi}}=\sqrt{3}I_{_{\phi}}$.

С учетом этих соотношений выражения для записи комплексов фазных напряжений представлены выражениями: фазные напряжения:

Тип соединения обмоток «звезда»	Тип соединения обмоток «треугольник»
$U_{a} = \frac{U_{\pi}}{\sqrt{3}} \cdot e^{+j0^{0}}, B;$ $U_{e} = \frac{U_{\pi}}{\sqrt{3}} \cdot e^{-j120^{0}}, B;$ $U_{C} = \frac{U_{\pi}}{\sqrt{3}} \cdot e^{+j120^{0}}, B.$	$U_{ab} = U_{\pi} \cdot e^{+j0^{0}}, B;$ $U_{bC} = U_{\pi} \cdot e^{-j120^{0}}, B;$ $U_{aC} = U_{\pi} \cdot e^{+j120^{0}}, B.$

Кроме того, трезфазная цепь, фазные обмотки которой соединены по типу «звезда», может как трехпроводной, так и четырехпроводной.

Для трехфазных цепей вводится понятие «симметричной» нагрузки, т.е. нагрузки, комплексные сопротивления фазных нагрузок равны.

В случае, если нагрузка симметричная, а трехфазная цепь четырехпроводная, ток в нейтральном проводе равен нулю.

В случае, если нагрузка несимметричная, а трехфазная цепь четырехпроводная, ток в нейтральном проводе равен сумме комплексов токов, протекающих в каждой фазной нагрузке,т.е.

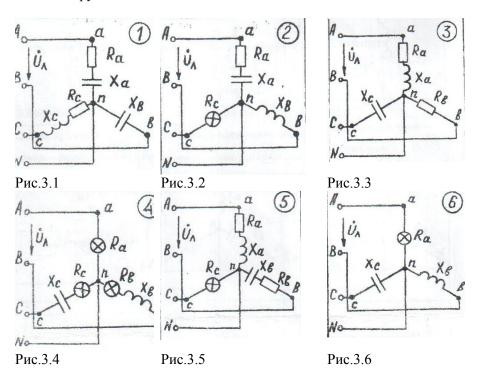
$$\underline{I}_{nN} = \underline{I}_a + \underline{I}_b + \underline{I}_C$$
.

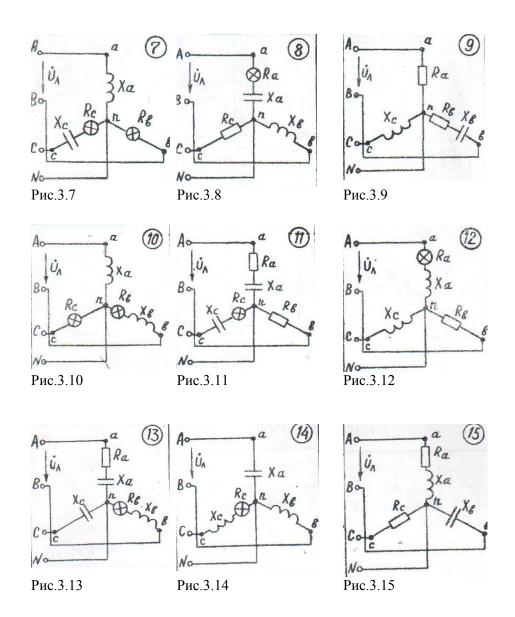
При несимметричной нагрузке фаз полная активная и полная реактивная мощности трехфазной цепи складываются из соответствующих мощностей в каждой фазе, т.е.

$$P = P_A + P_B + P_{C, BT};$$

 $Q = Q_A + Q_B + Q_C, Bap.$

Полная мощность трехфазной цепи: S = $\sqrt{P^2+Q^2}$, BA


Задание 3.


РАСЧЕТ ТРЕХФАЗНОЙ ЧЕТЫРЕХПРОВОДНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА

Для электрической цепи, схема замещения которой изображена на рис. 3.1-3.27, по исходным данным, заданным в табл. 3 параметрам и линейному напряжению, определить:

- комплексы фазных напряжений;
- -комплексы фазных и линейных токов и тока в нейтральном проводе;
- -активную, реактивную мощности каждой фазы и всей цепи, а также полную мощность цепи;
 - -построить векторную диаграмму токов и напряжений.

Номер варианта задания соответствует номеру в списочном составе группы.

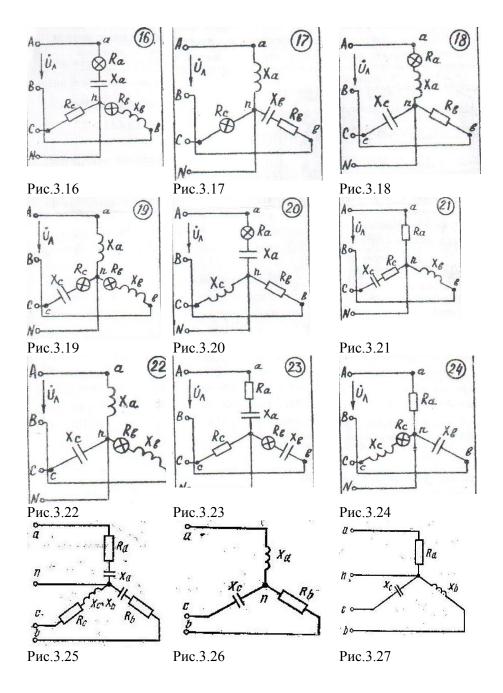


Таблица 3

Вариант	схема	U,B	Сопро	тивлені	ия фазн	ых потр		лица <i>э</i> ей. Ом
p		-,-	R _a	R _b	R _c	X _a	X _b	X _c
1	3-1	660	16	-	8	11	20	6
2	3-2	380	6	-	10	8	22	-
3	3-3	660	8	38	-	6	-	19
4	3-4	220	5	3	6	-	4	8
5	3-5	380	6	8	10	8	6	-
6	3-6	220	22	-	-	-	11	22
7	3-7	380	-	20	8	11	-	8
8	3-8	220	8	-	17	8	10	-
9	3-9	660	38	14	-	-	14	19
10	3-10	380	-	10	20	22	11	-
11	3-11	220	12	10	6	12	-	8
12	3-12	380	6	20	-	8	-	10
13	3-13	220	8	12	-	8	12	15
14	3-14	660	-	-	6	20	15	8
15	3-15	380	20	-	38	20	19	-
16	3-16	660	8	9	22	12	11	-
17	3-17	380	-	6	12	10	8	-
18	3-18	660	14	11	-	14	-	22
19	3-19	220	-	3	8	6	4	6
20	3-20	380	6	22	-	8	-	11
21	3-21	220	19	-	15	-	38	10
22	3-22	380	-	6	-	22	8	20
23	3-23	220	3	6	10	4	8	-
24	3-24	660	20	-	14	-	11	14
25	3-25	380	8	6	10	10	22	10
26	3-26	220	-	18	12	-	-	22
27	3-27	380	6	-	-	8	-	38

Пример решения задания 3.

В качестве примера для решения проведем расчет трехфазной четырехпроводной электрической цепи, схема замещения которой представлена на рис. 3.28.

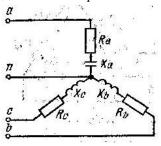


Рис.3-28.Схема замещения трехфазной четырезпроводной электрической цепи

Дано:
$$U_{_{A}}=380B$$
 , $R_{_{a}}=8$ Ом, $X_{_{a}}=6$ Ом, $R_{_{b}}=6$ Ом, $X_{_{b}}=8$ Ом, $Rc=5$ Ом, $X_{_{c}}=5$ Ом.

Расчет трехфазной электрической цепи ведется символическим методом и предполагает выполнение следующих действий.

3.1. Определение комплексных фазных напряжений с учетом основных соотношений и способов соединения фазных обмоток:

$$U_a = \frac{U_{\pi}}{\sqrt{3}} \cdot e^{+j0^0} = 220 \cdot e^{+j0^0} \text{ B};$$

$$U_e = \frac{U_{\pi}}{\sqrt{3}} \cdot e^{-j120^0} = 220 \cdot e^{-j120^0} \text{ B};$$

$$U_C = \frac{U_{\pi}}{\sqrt{3}} \cdot e^{+j120^0} = 220 \cdot e^{+j120^0} \text{ B}.$$

3.2. Определение фазных сопротивлений в алгебраической и показательной формах комплексного числа по формулам, представленным в табл. 2.2:

$$\underline{Z}_a = R_a - jX_a = 8 - j6 = \sqrt{8^2} + 6^2 \cdot e^{-jarctg\frac{6}{8}} = 10 \cdot e^{-j37^0} \text{, Om}$$

$$\underline{Z}_b = R_b + jX_b = 6 + j8 = \sqrt{8^2} + 6^2 \cdot e^{+jarctg\frac{8}{6}} = 10 \cdot e^{+j53^0} \text{, Om}$$

$$\underline{Z}c = Rc + jXc = 5 + j5 = \sqrt{5^2 + 5^2} \cdot e^{+jarctg\frac{5}{5}} = 7 \cdot e^{+j45^0}, \text{ Om}$$

3.3. Определение комплексов фазных, линейных токов и тока в нейтральном проводе:

$$\underline{I}_{a} = \frac{\underline{U}_{a}}{\underline{Z}_{a}} = \frac{220 \cdot e^{+j0^{0}}}{10 \cdot e^{-j37^{0}}} = 22 \cdot e^{+j37^{0}}, A$$

$$\underline{I}_{b} = \frac{\underline{U}_{b}}{\underline{Z}_{b}} = \frac{220 \cdot e^{-j120^{0}}}{10 \cdot e^{+j53^{0}}} = 22 \cdot e^{-j173^{0}}, A$$

$$\underline{I}_{C} = \frac{\underline{U}_{c}}{\underline{Z}_{c}} = \frac{220 \cdot e^{+j120^{0}}}{7 \cdot e^{+j45^{0}}} = 31, 4 \cdot e^{+j75^{0}}, A$$

$$\underline{I}_{nN} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 22\cos (37^{0}) + j22\sin(+37^{0}) + 22\cos (473^{0}) + j22\sin(-173^{0}) + 31, 4\cos (475^{0}) + j31, 4\sin (475^{0}) = 3,86 + j40,886 = 41,1 \cdot e^{+j84^{0}}$$

3.5. Определение активной, реактивной, полной мощности каждой фазной нагрузки и цепи в целом:

$$\begin{split} P_a &= R_a \cdot I_a^2 = 8 \cdot 22^2 = 3872 \text{ BT} \\ P_b &= R_b \cdot I_b^2 = 6 \cdot 22^2 = 2904 \text{ BT} \\ P_c &= R_c \cdot I_c^2 = 5 \cdot 31, 4^2 = 4929, 8 \text{ BT} \\ Q_a &= X_a \cdot I_a^2 = 6 \cdot 22^2 = 2904 \text{ Bap} \\ Q_b &= X_b \cdot I_b^2 = 8 \cdot 22^2 = 3872 \text{ Bap} \\ Q_c &= X_c \cdot I_c^2 = 5 \cdot 31, 4^2 = 4929, 8 \text{ Bap} \\ Q_{cnn} &= P_a + P_b + P_c = 11705 \text{ BT} \\ Q_{non} &= -jQ_a + jQ_b + jQ_c = 5897, 8 \text{ Bap} \\ \underline{S} &= P_{non} + jQ_{non} = 11705 + j5897, 8 = 13107 \cdot e^{+j27^0} \text{ BA}. \end{split}$$

3.6. Построение векторной диаграммы осуществляется на плоскости комплексных чисел.

Методика построения заключается в следующем:

- выбираем маштаб построения векторов напряжений и токов;
- строим равносторонний треугольник, сторонами которого являются линейные напряжения в выбранном масштабе;
- из вершин треугольника методом засечек откладываем векторы фазных напряжений в виде радиусов циркуля (в том же масштабе);
- точка пересечения трех радиусов фазных напряжений является нейтральной точкой и обозначается n;
- соединив полученную точку n с вершинами треугольника, получаем вектора фазных напряжений;
- от оси (+ 1) вещественных чисел по расчетным значениям токов откладываем вектора фазных токов и тока в нейтральном проводе.

В результате получаем векторную диаграмму, представленную на рис. 3-29.

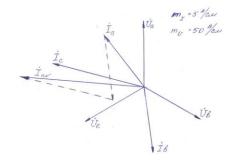


Рис. 3-29. Векторная диаграмма фазных токов и напряжений трехфазной четырехпроводной электрической цепи, соединенной по типу «звезда», с несимметричной нагрузкой.

Список рекомендованной литературы

- 1. Иванов И.И. Электротехника и основы электроники: учебник для студентов вузов: /И.И.Иванов, Г.И.Соловьев, В.Я.Фролов. 7-е изд., перераб. и доп. Санкт-Петербург: Москва: Краснодар: Лань, 2012.-736 с.: ил. (Учебник для вузов).- ISBN 978-5-8114-0523-7.
- 2. Новожилов О.П..Электротехника и электроника: учебник для бакалавров: /О.П.Новожилов— 2-е изд. исправ. и доп. Москва: Юрайт, 2013.-653 с.—.(Бакалавр. Базовый курс).- Библиогр.: с. 632-635.- с. Пред.указ.: с. 636-648.- ISBN 978-5-9916-12016-1.
- 3. Атабеков Г.И. Теоретические основы электротехники. Линейные электрические цепи. 8-е изд., стер.- СПб. [и др.]: Лань, 2010.-592 с.
- 4. Теоретические основы электротехники. Учебник (ГРИФ) //Лоторейчук Е.А. М.: ИД "ФОРУМ": ИНФРА-М, 2010. 320 с.
- 5. Жаворонков М.А. Электротехника и электроника: учеб. пособие для студ. Учреждений высш. проф. образования/ М.А. Жаворонков, А.В, Кузин.- 4-е изд., испр. М.: Академия, 2011. 400 с. (Сер. Бакалавриат).

Список использованной литературы

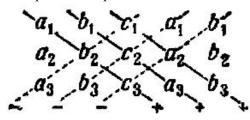
- 1. Е.И.Гаршина. **Общая электротехника и электроника:** методические указания к самостоятельной работе по выполнению контрольной работы /Новосиб. гос. аграр. ун-т /— Новосибирск: Изд-во НГАУ, сост.Е.И.Гаршина. 2018. 8 с.
- 3. Е.И.Гаршина. Теоретические основы электротехники: тетрадь лабораторных работ по электротехнике / Новосиб. гос. аграр. ун-т. Инженер. ин-т; сост.: Е.И.Гаршина, М.М. Федорова, И.П. Щеглов. 6-е изд., перераб. и доп. Новосибирск, 2017. 17 с.

СОДЕРЖАНИЕ

Тема1: Расчет электрических цепей постоянного тока	5
1.1. Основные сведения	5
1.2. Задание 1	7
1.3. Пример решения задания 1	11
Тема 2. Расчет электрических цепей однофазного	
переменного тока	16
2.1. Основные сведения	16
2.2. Задание 2	19
2.3. Пример решения задания 2	24
Тема 3. Расчет электрических цепей трехфазного переменного	
тока	29
3.1. Основные сведения	29
3.2. Задание 3	31
3.3. Пример решения задания 3	35
Список рекомендованной литературы	38
Список использованной литературы	38
Содержание	39
ПРИЛОЖЕНИЕ	40

Решение системы трех линейных уравнений с помощью определителей

Определение:


$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_2 b_1 c_3 - a_1 b_3 c_2 - a_3 b_2 c_1$$

называется определителем третьего порядка.

 $\mathbf{q}_{\mathsf{ИСЛА}}\,a_1,\,a_2,a_3,b_1,b_2,b_3,c_1,c_2,c_3$ называются элементами определителя.

Элементы a_1, b_2, c_3 образуют *главную диагональ* определителя, а элементы c_1, b_2, a_3 – его *побочную диагональ*.

Простое правило для запоминаний этого выражения: запишем еще раз все элементы определителя, приписав к ним снова первый и второй столбцы:

Со знаком плюс берем произведение элементов, стоящих на главной диагонали определителя, а также на двух параллелях к ней, содержащих по три

элемента (на рисунке они перечеркнуты сплошной линией).

Со знаком минус берем произведения элементов, стоящих на побочной диагонали и на двух параллелях к ней, содержащие по три элемента (на рисунке они перечеркнуты пунктиром).

Решение системы линейных уравнений с помощью определителей можно записать так (формулы Крамера):

$$\begin{cases} a_1x + b_1y + c_1 = d_1, \\ a_2x + b_2y + c_2 = d_2, \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

$$x = \frac{\left| \begin{array}{ccc|c} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{array} \right|}{\left| \begin{array}{ccc|c} a_1 & b_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & b_3 & c_3 \end{array} \right|}, \ y = \frac{\left| \begin{array}{ccc|c} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{array} \right|}{\left| \begin{array}{ccc|c} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{array} \right|}, \ z = \frac{\left| \begin{array}{ccc|c} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{array} \right|}{\left| \begin{array}{ccc|c} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array} \right|}.$$

Определитель, стоящий в знаменателе, называется главным определителем системы уравнений. Естественно, вышеприведенные формулы применимы только в том случае, если главный определитель отличен от нуля.

Пример.. Решить систему

$$\begin{cases}
2x - y - z = 7, \\
x + y - 2z = 2, \\
x - y - 3z = -2.
\end{cases}$$

Имеем

$$x = \frac{\begin{vmatrix} 7 & -1 & -1 \\ 2 & 1 & -2 \\ -2 & -1 & -3 \end{vmatrix}}{\begin{vmatrix} 2 & -1 & -1 \\ 1 & 1 & -2 \\ 1 & -1 & -3 \end{vmatrix}} = \frac{-21 + 2 - 4 - 6 - 14 - 2}{-6 + 1 + 2 - 3 - 4 - (-1)} = \frac{-45}{-9} = 5.$$

После этого сводим решение исходной системы к решению системы с двумя неизвестными:

$$\begin{cases} 5+y-2z=2,\\ 5-y-3z=-2. \end{cases}$$
 Решив ее, получим $x=5,y=1,z=2$.
$$\begin{cases} 3x-y+4z=15,\\ x+3y+z=18,\\ 2z+y-3z=11. \end{cases}$$

Составитель: Гаршина Елена Ивановна

ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Методические указания к самостоятельной работе и выполнению контрольной работы

Редактор *М.Г. Девищенко* Компьютерная верстка *В.Н. Зенина*

Подано в печать «_	_»20)21 г. Формат 60 х 84 ¹ / ₁₆
Объем 2,	5 учизд. л., 2,	,5 усл. печ. л.
Тираж 1	0 экз. Изд №	Заказ

Отпечатано в Издательском центре НГАУ «Золотой колос» 630039, Новосибирск, ул. Добролюбова, 160, кааб. 106. Тел./факс (383) 267-09-10. E-mail: 2134539@mail.ru